NUMERICAL SIMULATION OF FLOW DURING
COMPRESSION OF CYLINDRICAL SAMPLES
BY A GLANCING DETONATION WAVE
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The parameters of shock waves created in cylindrical samples of various materials during
detonation of explosive charges surrounding them have been determined experimentally [1-3].
It was established that in a number of materials the reflection of a conical shock wave from
the symmetry axis of a sample leads to the formation of a Mach triple shock-wave configura-
tion which gives rise to a complex flow pattern in the region beyond the shock waves. Anal-
ytic study of irregular reflection is a complex problem, Solutions obtained under various
assumptions about the nature of the flow are presented in papers reviewed in [4], In the
present paper, axisymmetric flow of detonation products (DP) and sample material in the
region adjacent to the detonation front is determined from the solution of a two~dimensional,
time-dependent problem in gasdynamics by the finite-difference method [5].
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where u and v are tl e axial and radial components of the velocity vector, p, p, and e are the pressure, den-
sity, and specific in ernal energy, and x and r are the coordinates of the points, was supplemented by the

equation of state for the detonation products
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X o and by the equation of state for the sample material in the form
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§ The calculation was performed in the region ABCDEFK (Fig. 1),
& 4 8z where AB is the symmetry axis; FK is the detonation front, which is as-
Fig. 1 sumed plane, perpendicular to the generators of the charge, and propagating
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at a constant velocity D. The angle 6 is found from the condition for the determination of the limiting
characteristic of Prandtl—Meyer flow,
Ty —1
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which is realized in the neighborhood of the point F for dispersion of DP into a vacuum; |FE| = hx/cos
(0—7/2), where hx, a step along x in the finite-difference mesh, is constant in the DP region; FE, ED, and
BD are the outer boundaries of the region through which efflux of DP and material from the region of cal-
culation occurs. During the calculation, the position of the boundaries KC and KA shifted from the arbitrari-
ly assigned initial positions KC' and KA' to the corresponding contact discontinuity between DP, sample
material, and the leading shock wave,

The region of computation was subdivided into N layers along the x axis and M + K layers along r (M
and K are the number of layers in the sample and in DP). The eoordinates of the mesh points of the moving
finite-difference mesh were determined from the expressions (numbering from the origin at A")

Liyj :xoai”l"i (‘r.\’sj - ijj)/j\f’
rig=jri.m/M,

0K iCN, 0 i M;
l Zi,;==Zx, (i1 N),

rij=riym+ (i — M)(ri, u+x) — rom)/K,
0<I< N M+1 < j<(M+EY;
Tyoj =25 0 < UM 4 K); 1005 = j(ro/M); 0 < j<KM;
Fimtx) =Tos 1 <KECW; xi;.’\I:i(-Tl/N); 0 i< N ro.mamy =Ty,

where x4, 1y, Ty, and ry are constants, ro = ry + x; tan(0 —(W/Z)]/z,andri,Mand X,j0 =i=N,0=j=M
were determined at mesh points on K€ and KA by displacement along r and x at velocities calculated by in-
terpolation of the velocities of adjacent segments with weights proportional to the lengths of those segments
in accordance with expressions similar to those given in {5].

The values of the gasdynamic quantities on FK were assumed equal to values of the corresponding
quantities in the Chapman—Jouguet state. The pressure on FE and the radial component of the velocity on
AB were assumed to be zero. The values of the parameters on the boundaries BD and ED were assumed
equal to the values of the corresponding parameters in the internal cells of the region. The boundary con-
ditions on KA and KC were calculated from iteration formulas for the calculation of detonation decay [5]
altered for an equation of state in the form (1). Values of the parameters on the boundaries of internal cells
were determined from approximate formulas for the calculation of weak ("acoustic") decay of a detonation.

The initial values of gasdynamic quantities were assumed independent of radius and were found from
the expressions

wz)=alcgy +8,(U — €Cag ) zlz )+ 6D;

p@y=alp ¢y +08(p coy — Po)o/zy]14 8py;

e(r)=ale gy + 8ilec; — edalzl;
v(x)=0,

where @ = 1 and § = 0 in the region occupied by DP; a = 0 and 0 = 1inthe region ABCK; cc_j, PC-J, and
eq_g are the velocity of sound, density, and internal energy in the Chapman—Jouguet state; 8y, 8, 63, U, Py,
and e, are constants chosen for approximation of the solution to the one-dimensional problem on the propa-
gation of a detonation in a tube with constant cross section and rigid wallis.

The basie ealeulations were performed for explosive parameter values P = 7.65 km/ sec, Po_g=
250 kbar, po_y = 2.25 g/em?, ¥ = 2.75, cq_y = 5.61 km/sec, and D = 6.60 km/sec, Po_y = 128 kbar, pg-g=
1.5 g/em®, ¥ = 2.75, co_g = 4.84 km/sec. In all the versions of the calculations described, ri/r, = 4 (ratio
of external charge radius to internal charge radius). For the selected ratio of radii, replacement of the
boundary eondition on FD (6 = 7/2) by the condition v/FD = 0 leads to an insignificant change in the gas-
dynamic parameters of material flow.
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The parameters B, p;, and ¢y in Eq. (1) were chosen such that the selected equation of state was a
model of an actual medium under the conditions of the problem considered. For example, for water it was
assumed py = 1 g/em?, ¢y = 2.15' km/sec, and B = 2; for aluminum, py = 2.79 g/em®, ¢y = 5.25 km/sec, and
B = 2.75; for magnesium, pg = 1.725 g;/cma, cy = 4.45 km/sec, and 8 = 2,75,

The dependence of the pressure distribution on the sample axis at various times (Fig. 2) and also the
(x, t) diagram for individual mesh points on the boundary KA (Fig. 3) (values of r at these mesh points re-
mained unchanged in accordance with the algorithm for the construction of the mesh, A = r/ Ty) characterize
the process for the establishment of KA in a position corresponding to the position of the leading shock wave
and producing a steady-state flow mode.

The determination of the steady-state position of the contact discontinuity is complicated by its in-
stability. The interface between DP and sample material, the coordinates of which were obtained by aver-
aging over the time interval 7 = 0.6r,/D, is denoted by the solid line KC in Fig. 1; the dashed line denotes
the interfaceata given point in time. The instability of such a tangential discontinuity in ideal gases has
been demonstrated [6] and the existence of instability of the DP —metal interface is shown by waves which
remain on the surface of metal samples in experiments on loading by a detonation wave glancing along the
surface. The wavelength of the perturbation depends linearly on the mesh step, covers 4-5 computing inter-
vals, and is apparently determined by finite-difference "blurring™ of the reflected shock wave, the emer-
gence of which at the interface creates the instability. The question of the relation between the observed
and actual stabilities requires additional study.

The pattern of the distribution of gasdynamic parameters in water (D = 6.60 km/sec) is shown in Fig.
4 at the time of establishment of a steady-state flow mode, Lines of equal density are shown by the solid
lines and isobars are indicated by the dashed lines. The isobars in the neighborhood of the leading shock
wave are not plotted in Fig. 4, since their position coincides with the lines of equal density. The pressure
in the region beyond the linear portion of the shock wave adjacent to the axis is® 210 kbar and is 50 kbar
near the corner. The lengths of the vectors are proportional to velocity. (The velocity near the point A is
~3 km/ sec.) The numbers give the numerical values (p in g/ cm3, p in kbar) and the remaining notation is
the same as in Fig, 1.

A qualitative analysis of the flow pattern makes it possible to conclude that there is within the region
a weak shock wave and a jet of material in the paraxial zone with a specific energy considerably greater
than the specific energy in the peripheral Iayer‘s of the
material. Determination of the exact position of the
reflected wave and of the tangential discontinuity be-
tween material passing through the straight shock
wave and the two slanted waves is difficult because of
their "blurring" by finite-difference effects over sev-
eral computing intervals.

The shape of the leading shock wave in water for
D = 7.65 km/sec is shown in Fig. 5. (curve 3)., The
difference between shock waves when D = 6.60 km/sec
(curve 4) and 7.65 km/sec in the neighborhood of the
corner K is so insignificant that they duplicate one an-
other in the graph. The difference in the relative frac-
tion of the linear portion of the shock wave adjacent
to the axis, the so-called Mach disk, is more marked.

Fig. 4
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For aluminum (curve 1) and magnesium (curve 2) samples at D = 6,60 km/sec, the shape of the lead-
ing shock wave is nearly parabolic (Fig. 5) and is qualitatively similar to that recorded for aluminum [3].
Analysis of the values of the gasdynamic quantities shows that a flow mode with a velocity insignificantly
greater than the velocity of sound in the material is achieved beyond the front of the leading shock wave on-
ly in a small neighborhood of the point K. Therefore, the emergence of the reflected shoek wave, the crea-
tion of which is only possible in this region on the boundary between DP and sample material, and the re-
sultant instability of the contact discontinuity begin directly beyond the detonation front. Determination of
the position of the reflected shock wave is practically impossible because of the "blurring" and marked os-
cillation in the values of the gasdynamic quantities in the cells adjacent to the contact discontinuity, The
shape of the isobars beyond the front KA of the leading shock wave in aluminum is shown in Fig. 6. Numer-
ical values of the pressure are 100 kbar for the rightmost isobar and 220 kbar for the leftmost isobar on
the axis. The isobars in magnesium are of a qualitatively similar form.,

The results of this work were discussed maﬁy times with Yu. I. FadeenkoandS. K. Godunov, to whom
the author is grateful for valuable advice.
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